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1. INTRODUCTION

Physical mechanisms of light confinement and localiza-
tion are extensively investigated in the literature. Nonlin-
ear Kerr effect may drive intense-field filamentation, es-
pecially in homogeneous [1,2] and periodic structures
[3,4], where media are unable to bound an optical wave.
Bessel beams constitute a different sort of diffraction-free
localized field induced by rephasing [5,6]. The spatial-
spectrum constituents of a Bessel beam are phase-
matched exclusively at the optic axis, where a high inten-
sity is reached. In vacuum, these spectral constituents are
confined along a circumference in the reciprocal space,
supporting a radially symmetric field distribution [7,8].
Nondiffracting solutions with azimuthal symmetry are
also observed in homogeneous [9] and layered media [10].
However, such a symmetry disappears necessarily in 2D
and 3D photonic crystals [11-15], resulting in more com-
plicated patterns.

On the other hand, anisotropic diffraction-free propa-
gation of localized Bessel beams has been reported previ-
ously in uniaxial crystals [16], where eccentricity of the
elliptic transverse patterns depends upon the refractive
indices associated with the ordinary and the extraordi-
nary axes. In this paper we demonstrate the existence of
nondiffracting transverse-electric (TE) fields in 1D photo-
nic crystals with spatial localization of elliptic geometry.
Contrarily, TE divergenceless fields in dielectric materials
considered optically uniaxial correspond to ordinary
waves, giving rise to Bessel beams with transverse radial
symmetry.

The paper is organized as follows. In Section 2 the basic
grounds of diffraction-free wave propagation in a 1D pho-
tonic crystal are reviewed. In Section 3 the paraxial ap-
proximation is introduced in order to obtain semianalyti-
cal expressions of the dispersion surface equation. In
Section 4 we investigate the influence of the elliptic geom-
etry of the isofrequency curves over the spatial distribu-
tion of a paraxial nondiffracting beam. In Section 5, dis-
persion curves and wave patterns of localized diffraction-
free fields in a layered medium are numerically evaluated
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and compared with the analytical expressions presented
in previous sections. Finally, in Section 6, the main con-
clusions are outlined.

2. DIFFRACTION-FREE PROPAGATION IN
ONE-DIMENSIONAL PHOTONIC
CRYSTALS

A 1D periodic dielectric medium may be characterized by
a refractive index n(y) and a period L, in such a way that
n(y+L)=n(y). In this case, TE fields (E,=0) satisfy VE
=0. Assuming a harmonic time dependence exp(-iwt), TE
waves propagating in the nonuniform medium are solu-
tions of the Helmholtz wave equation,

VZE + k2n%(y)E =0, (1)

where kg=w/c is the wavenumber and c is the phase ve-
locity in vacuum. Typically, a TE field is expressed as a
superposition of Bloch modes written in the form

EFi(y)exp(ikr), (2)

where E, stands for a constant amplitude vector and
Fy(y) is a wave function of period L that depends upon the
pseudomomentum (PM) k=(k,,k,,k,). In particular, the
orthogonality relation KE;=0 holds for our solenoidal
wave fields. The component of the vector E, along the z
axis is proportional to its component along the x direction,
hereon called E(, and hence a scalar approach for the
wave field may be employed. At the end, our reduced
problem consists in searching for PMs and their associ-
ated wave functions Fy(y) being compatible with the
Helmholtz wave equation, i.e., satisfying

HFy = k3 Fy. 3)

In particular, & ,, stands for the modulus of the trans-
verse PM k| ,=(k,,k,), and the operator:
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H =3, +2ik,d, — (k) - kgn?). (4)

Concretely, the dispersion surface gives k&, as a function of
the 2D PM q=(k,,k,), so that a TE field may be generally
written as

E.R,z2)= f Eo(qQ)Fy(y)exp(ik.z)exp(iqR)d?q,  (5)

where R=(x,y) is the transverse spatial coordinate.

A factorization of Eq. (5) in the form exp(iyz)E'x(R) pro-
vides a wave field of invariant intensity pattern in trans-
verse planes. For instance, a single Bloch mode with
k.(q) =1y for a given transverse PM (k,,k,) is of this type of
diffraction-free field. In general, a given axial PM v (also
known as propagation constant) is degenerate, containing
a continuous number of Bloch modes having a distinct
transverse PM . A superposition of degenerate Bloch
modes may be represented by means of a spatial spec-
trum,

EO(kaky) = a(kmky) 6[’}/2 - k?(kmky)] ’ (6)

where & is the Dirac delta function and a(q) stands for a
spectral amplitude distribution. From Eq. (5) we infer
that such a modal superposition is also a diffraction-free
field.

At this point, we should emphasize that Bloch modes
are inherently unlocalized waves due to the periodic char-
acter of the wave function Fi.. However, localization is ex-
pected to occur in a superposition of Bloch modes under a
phase matching condition, that is, if on-phase interfer-
ence is produced at a given point Ry=(x(,yo). For nondif-
fracting solutions of Eq. (5), a sufficient condition is met if
the complex argument of Ey(q) equals that of the term
F;;(yo)exp(—iqRo). The oscillatory behavior of exp(iqR) in
the integral supports the phase matching condition to be
found uniquely at the singular point Ry.

3. ISOFREQUENCY CURVES IN THE
PARAXIAL REGIME

By imposing continuity of Fi(y) and its first derivative,
nontrivial solutions of Eq. (3) may be given for PMs sat-
isfying the dispersion equation, which symbolically we
write h(ky,kziy) =0. Interestingly, if the periodic wave
function Fy is a solution of Eq. (3) for k, its complex con-
jugate is also a solution for -k, i.e., F_i(y)=F)(y), so that
h(—ky,kiy)=0. Here we consider paraxial waves around
the z axis in such a way that &, is of a large positive value
satisfying k§>k§ and k§>k§ simultaneously. In particu-
lar, let us assume we find an eigenvalue kiy:kf1 of Eq. (3)
for £,=0, i.e., h(O,k,zn)=0. In the general case of achieving
several eigenvalues for k£, =0, for convenience we consider
k,, to be the largest positive real number. Therefore,
paraxial waves have PMs k distributed in the vicinity of
the on-axis PM k,,=(0,0,%,,). As a consequence, we may
express h in power series and write

h(ky,k?%,) ~ Ak + B(kY , - k2), (7

where A=271h/i(k,)* and B=oh/ r?(kiy), both evaluated
at k=k,,, are real-valued parameters. We point out that
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oh/d(k,) vanishes at k,, since & is an even function of &,.
When the quadratic expansion of the function 2 given
in Eq. (7) equals zero, the dispersion equation approaches

K2+ %k + k2= k2. (8)

Since %, reaches a maximum value %,,, 72=B/A is nec-
essarily a positive real number; therefore, this quadric
surface corresponds to a spheroid. Equation (8) turns out
to coincide with Fresnel’s equation of wave normals (also
known as index ellipsoid) corresponding to the extraordi-
nary wave in a crystal that is optically uniaxial along the
y axis, being n,=k,,/ky and n,=n,n the extraordinary and
ordinary refractive indices, respectively [17-19]. Note
that, however, divergenceless fields in uniaxial crystals
correspond to ordinary waves, which Fresnel’s equation
represents as a sphere.

Particularly, isofrequency curves represent points in
the (&,,k,) space corresponding to Bloch PMs k having an
axial component of the same value vy, i.e., )/Z—kf(kx,ky)
=0. These diagrams are suitable for the analysis of
diffraction-free beams since, as shown in Eq. (6), they are
synthesized as a superposition of Bloch modes associated
with a given isofrequency curve. Contrary to the case of
homogeneous media, where isofrequency curves are cir-
cumferences of different radii [7], a significant anisotropy
along the periodicity direction is observed. An analytical
equation representing isofrequency curves may be de-
rived by substitution of 2,=vy into Eq. (8),

o))
=]+ =) =1, (©)
v nv
vz

giving rise to ellipses of semiminor axis v:(k,zn— %)
suming »>1, and semimajor axis v7.

as-

4. ELLIPTIC BESSEL ENVELOPE

Let us study nondiffracting paraxial beams of propaga-
tion constant y<k,,, constructed from the superposition
of a uniform distribution of TE Bloch modes. We conve-
niently normalize the spectrum, |a(q)|=1. These particu-
lar paraxial waves have a neglecting component of the
vector E, along the z axis, as inferred from the orthogo-
nality relation KE;=0. In agreement with Eqgs. (6) and (9)
we may write

Eo(ky,k,) = exp(-iC)d(k2 + 177 %k2 - v?), (10)

where C(k)=arg[F(0)] in order to have a phase matching
at the origin, Ry=(0,0).

An important feature to be exploited in our analysis is
the fact that, under general conditions, the periodic wave
function Fy is fundamentally invariant upon paraxial
PMs. In such a case, Fy could be substituted by that cor-
responding to the PM k,,, namely, ka. For this purpose,
let us consider

HFy =[2ik,d, - (k) —k})]Fy . (11)

A sufficient condition of proximity between the wave func-
tions Fi and Fy, may be established in the form of the
inequality |(k2Ly—H)ka|<|k2Lyka|. This is satisfied if k§
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<kfn, a trivial condition for paraxial waves, and simulta-
neously

|2k, 0,F | <k |Fy |, (12)

within a period, 0 <y <L. Moreover, the function ka has
a periodic variation from which we may estimate the pre-
dominant harmonic component is exp(i27L~ly), which
holds for well-behaved spatial distributions of the refrac-
tion index n(y) and vacuum wavelengths in the order of L
(k,, in the order of 2arL~1). Under these circumstances we
make use of the approach [3,Fy |~%,,|Fy [; thus, Eq. (12)
is further simplified as

2klky| < k2 + k2. (13)

In the paraxial approximation (kiyzkfn), this condition

carries essentially to that given above, |ky|<E,,.

Our analysis may be simplified without loss of general-
ity if we consider that the phase constant C vanishes at
k=k,, (Fy may be arbitrarily chosen to be a real func-
tion). Introduction of Eq. (10) into Eq. (5), and factoring
out the stationary elements Fy (y)exp(ik,z) in the integral,
results in a wave field,

E.(R,z) = exp(i12)Fy (y)W(R), (14)

where

W(R) = f f Sk + 7772k — vP)explilkyx + kyy)1dk,dk,.
(15)

Straightforward evaluation of the integral is performed if
we employ elliptic coordinates. Therefore, we define

(ky,ky) = (q cos 6,gnsin 6), (16)

(x,y) = (R’ cos ,R' 7' sin ¢), (17)

so that the function W(R)=W’'(R’) is obtained as

27 pw
W(R') = nf f 8q? - v*)expligR’ cos(6- ¢)]gdgdé.
o Jo

(18)
Using the equation 8(q — v)=2q 8(g?—1?) we finally write
2
W(R') = Z‘Inf expl[ivR’' cos(6— ¢)]do=mnJy(vR'),
0

(19)

where J is a Bessel function of the first kind. We derive
that W’ is independent of the coordinate ¢, thus having
elliptic symmetry of eccentricity e=+1—- 2.

The analysis of the function W’ provides important fea-
tures of the electric field E,. The Bessel function in W/(R’)
has an absolute maximum at origin (R'=0), the point
where the phase matching condition is imposed. Consid-
ering that localization of the diffraction function W' is
bounded by the first zero of J, it results vR’'=~0.77.
Equivalently, the ellipse,
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%2+ 7y2 = 0.5972v72, (20)

encircles a region where rephasing enables the highest in-
tensities of the electric field. Concretely, along the y axis
(x=0), the width Ay=0.777(5v)"! is much higher than
(nk,,)~1. For moderate eccentricities, 7k,, is of the order of
27L1, so that Ay>L. Consequently, W' has a slow varia-
tion in comparison with the function ka(y), along the pe-
riodicity direction.

Going further with this idea, and based on the analyti-
cal description of Eq. (14), the electric field E, is sepa-
rated into slow and fast spatial components. This sort of
analysis is similar to the envelope function approach
based on the multiple scale method. [20-22] Concretely,
the paraxial E, propagates along the optic axis at a spa-
tial frequency,

y=F: - A2 < —i (21)

having a carrier transverse waveform ka(y) of period L
and an elliptic Bessel envelope Jy(vR’). Specifically, the
field envelope W(R), describing the slowly varying part of
the wave function, exceptionally replicates the field pat-
tern in the x direction. As previously shown, wave local-
ization induced by the phase matching condition particu-
larly enforces the envelope function to have a maximum
complex amplitude at Ry,

5. EXAMPLE: A LAYERED MEDIUM

Let us illustrate our approach with a simple example. We
consider a bivalued function n(y) corresponding to a peri-
odic system made of alternating layers of two dielectric
media. Specifically, n(y)=n; for 0<y<a (region I) and
n(y)=nq for -b<y <0 (region II), with L=a +b the period
of the layered structure. From Eq. (3) we may express
Fy(y) as a linear combination of the functions
exp(-ik,y)exp(xay) in region I, where

a= (k% - kgn})2. (22)
In region II we conveniently employ a superposition of the
functions exp(-ik,y)exp(+iBy), if ny>n4, being

B=(k2n - kiy)l/z. (23)
By imposing continuity of Fiy(y) and its first derivative,

nontrivial solutions are given if the dispersion equation
cos(kyL)=G(kiy) holds, where the function

a2 2

G = cosh(aa)cos(8b) + sinh(aa)sin(Bb). (24)

aB

The above-mentioned dispersion equation was first de-
rived for the electronic band structure of a 1D crystal per-
formed with the Kronig—Penney model [23]. Finally, the
periodic wave function is then written as

Fy(y) = exp(- ik,y){B sinh[a(a — y)] + exp(ik,L)

X [B cos(Bb)sinh(ay) + a cosh(ay)sin(8b)]},
(25a)

in region I, and
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Fy(y) = exp(- ik,y){B cos(By)sinh(aa) — @ cosh(aa)sin(By)
+ aexp(ik,L)sin[ (b +y)]}, (25b)

in region II, where a convenient constant factor may be
inserted into Eqs. (25). We point out that, as expected,
this wave function is Hermitic in the PM space, F_y(y)
=Fy(y).

In Fig. 1(a) we plot the dispersion equation correspond-
ing to a layered structure of period L=2.3 um comprised
of dielectric slabs of width 5=1.7 um and refractive index
ng=1.46 immersed in air (n;=1 and a=0.6 um), evalu-
ated at £y=4.05 um~1. It is shown that k., is a periodic
function of %, (with a period 27/L=2.73 um™1) and has
even symmetry about the origin. The modulus of the
transverse PM has an upper limit, £ ,,<k,,, where &,
=5.75184 um~!, appearing as a discrete number of band-
gaps (plotted in yellow). In particular, paraxial waves
along the z axis have PMs distributed in the vicinity of
the on-axis PM k,,=(0,0,%,,). Figure 1(b) shows a contour
plot of the first-band dispersion surface around k,, that is
found at the origin (k,,k,)=(0,0). Contour lines (isofre-
quency curves) are symmetric about the origin, so that
they are plotted in the first quadrant. Concretely, for a
fixed &, =y, the values of |k,| in the first Brillouin zone are
bounded by |kjv(y)|, where k"& is the inverse function of
k,,; on the other hand, |k,|<v.

A quadratic paraxial equation representing isofre-
quency curves of the form of Eq. (9) is derived as follows.
Series expansions within the validity of the paraxial re-
gime provide, on the one hand,

cos(k,L) ~ 1 - kL2, (26)
and, on the other hand,
G=~1+G, (K%, - kL), (27)

where G,, is the first derivative of G evaluated at k,,. In-
voking the narrowband approximation, Ak <k,,, where Ak
represents the width of the first band, we find that G,,
=(k,,Ak)™1. In our numerical example, G,,=1.69 pm? and

Ky —
6 @ L (b)
e E——— 5.72648
4 0.8
3 Ky
2 0.4 \\
D)
-1 -0.5 0 0.5 1 0 03 06
K 2

Fig. 1. (Color online) (a) Dispersion equation at vacuum wave-
length \y=1.55 um for a layered medium made of dielectric
(ny=1.46) slabs of width 6=1.7 um immersed in air (¢=0.6 um).
(b) Isofrequency curves (only first quadrant) for equidistant val-
ues y of the axial PM belonging to the first band. Bandgaps are
plotted in yellow and PMs units are um™'.
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Fig. 2. (Color online) Field strength |E,|? in a transverse plane
of localized TE waves with a phase matching at Ry=(0,0) and
propagation constant: (a) y=5.750 um™ (»=0.145 um™!) and (b)
y=5.748 pm~! (v=0.210 um™).

(k,,Ak)"1=6.86 um?2. Finally, the dispersion equation may
be reduced as Eq. (9) if

n=(2G, L 22, (28)

The resulting quadric surface is a prolate spheroid when
2G, >L?, in agreement with Fig. 1(b), where 7=1.71.
Therefore, the eccentricity of the ellipses is €=0.810. Fi-
nally, in terms of the extraordinary and ordinary refrac-
tive indices, it is found that n,=k,,/kg=1.42 and n,
=2.42, respectively.

Figure 2 shows the transverse profile of |E,|? corre-
sponding to nondiffracting beams of different propagation
constants constructed analytically from the superposition
of a uniform distribution of TE Bloch modes, as given in
Eq. (14). As observed in single Bloch modes, beam deple-
tion in air is produced because of the presence of evanes-
cent waves. As a distinctive feature, light confinement oc-
curs in the dielectric slabs in such a way that the highest
intensities are reached at neighboring points of R,
=(0,0). In Fig. 2(a), the intensity maximum is not at-
tained at origin but is shifted at y=-0.849 um, approxi-
mately at the center of region II. Hence, a focal shift with
respect to the wave envelope is observed, which is attrib-
uted to the spatial carrier waveform patterning the cen-
tral lobe. Following the previously given discussion, the
origin of these fringes, having a spatial frequency 2#/L
independently of the propagation constant [see also Fig.
2(b)], must be found in the periodic function Fi(y).

Importantly, invariance upon paraxial PMs of the com-
plex periodic function F should be guaranteed in order to
use the envelope-function approach. Within the spectral
regime of validity, F, is conveniently approximated by

|
|
|
|
|
|
|
|

|
onrxgo 01 03 03 04
0.10 o Rs R

0.00 " L i
0.0 0.2 0.4 0.6 0.8 1.0 1.2

Ky (um™)

Fig. 3. (Color online) Behavior of the periodic function given in
Eq. (25) in the first band. (a) Squared modulus of Fy, for different
values of k,; solid curve for k,=0, dashed curve for %,
=0.366 um™!, and blue dotted curve for k,=/L; and (b) relative
error € versus k, (inset: ¢ for k,<0.4 pmL).
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Fig. 4. (Color online) Bessel envelope function J2(vR’) super-
posed upon the field intensity |E,|?, the latter evaluated numeri-
cally along the y axis for y=5.748 um1.

Fy , which is a real function. In Fig. 3(a) we show the be-
havior of |[Fy|? in the first band, for different values of the
spectral coordinate 0<k, < awL~1; values of some required
parameters are taken from the previous numerical ex-
ample. For the sake of clarity, we perform a renormaliza-
tion of the form ||F||=1, where

L
il = f Fuo)dy. (29)

0

For the paraxial value k,=0.366 um-L the function Fy
does not appreciably change in comparison with the on-
axis PM k,=0. Moreover, stationarity of Fy is reassured
even for nonparaxial values of k,; concretely, for the band-
edge value k,=m/L, the dotted curve of |F}/? seems not to
deviate in excess from the paraxial lines. In Fig. 3(b) we
estimate the relative error e=|Fy~Fy, | carried out in the
use of the stationary wave function Fy, . We point out that
the argument of the normalizing phasor is conveniently
introduced in order to minimize &, where 0 <& <4. Specifi-
cally for the numerical examples of Fig. 2, we derive that
£=<0.006 for y=5.750 um~!, where |k,|<0.250 um~!, in-
creasing for y=5.748 um= (|k,|<0.366 um™') up to
=<0.013.

Finally, in Fig. 4, we represent the intensity pattern
|E.|> derived numerically from Eqs. (5) and (6) for y
=5.748 um™1, together with the slowly varying Bessel en-
velope J%(vny), the former conveniently normalized. The
validity of our approach is reconfirmed by explicit com-
parison of Eq. (14) with our numerical computation [see
also Fig. 2(b)], also for long distances far from the origin.

6. CONCLUSIONS

We have presented a particularly interesting spatial dis-
tribution of nondiffracting, localized TE waves supported
in 1D photonic crystals. The description of the transverse
pattern is performed by means of a spatial carrier wave-
form, directly associated with the Bloch mode for the sta-
tionary PM k,,, and a Bessel envelope function of elliptic
symmetry that allows a localization of the field. For well-
behaved spatial distributions of the refraction index n(y)
and vacuum wavelengths in the order of the period L and
higher, the envelope function of the paraxial beam carries
the slow part of the diffraction pattern, a phenomenon
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called discrete diffraction [2,24]. Numerical simulations
are performed for a layered medium in order to support
the validity of our approach. A relevant point to be men-
tioned is the fact that our analysis may be satisfactorily
extended to account for paraxial beam propagation in ge-
neric 2D photonic crystals.

ACKNOWLEDGMENTS

This research was funded by the Generalitat Valenciana
under project GV/2007/043.

REFERENCES

1. A. Barthelemy, S. Maneuf, and C. Froehly, “Soliton
propagation and self-confinement of laser-beams by Kerr
optical non-linearity,” Opt. Commun. 55, 201-206 (1985).

2. D. Faccio, A. Averchi, A. Couairon, A. Dubietis, R.
Piskarskas, A. Matijosius, F. Bragheri, M. A. Porras, A.
Piskarskas, and P. D. Trapani, “Competition between
phase-matching and stationarity in Kerr-driven optical
pulse filamentation,” Phys. Rev. E 74, 047603 (2006).

3. D. Neshev, E. Ostrovskaya, Y. Kivshar, and W.
Krolikowski, “Spatial solitons in optically induced
gratings,” Opt. Lett. 28, 710-712 (2003).

4. D. N. Christodoulides, F. Lederer, and Y. Silberberg,
“Discretizing light behaviour in linear and nonlinear
waveguide lattices,” Nature (London) 424, 817-823 (2003).

5. J. Durnin, “Exact solutions for nondiffracting beams. I. The
scalar theory,” J. Opt. Soc. Am. A 4, 651-654 (1987).

6. J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free
beams,” Phys. Rev. Lett. 58, 1499-1501 (1987).

7. G. Indebetouw, “Nondiffracting optical fields: some
remarks on their analysis and synthesis,” J. Opt. Soc. Am.
A 6, 150-152 (1989).

8. J. Fagerholm, A. T. Friberg, J. Huttunen, D. P. Morgan,
and M. M. Salomaa, “Angular-spectrum representation of
nondiffracting X waves,” Phys. Rev. E 54, 4347-4352
(1996).

9. M. A. Porras, G. Valiulis, and P. D. Trapani, “Unified
description of Bessel X waves with cone dispersion and
tilted pulses,” Phys. Rev. E 68, 016613 (2003).

10. S. Longhi, K. Janner, and P. Laporta, “Propagating pulsed
Bessel beams in periodic media,” J. Opt. B: Quantum
Semiclassical Opt. 6, 477-481 (2004).

11. S. Longhi and D. Janner, “X-shaped waves in photonic
crystals,” Phys. Rev. B 70, 235,123 (2004).

12. S. Longhi, “Localized and nonspreading spatiotemporal
Wannier wave packets in photonic crystals,” Phys. Rev. E
71, 016603 (2005).

13. O. Manela, M. Segev, and D. N. Christodoulides,
“Nondiffracting beams in periodic media,” Opt. Lett. 30,
2611-2613 (2005).

14. K. Staliunas and R. Herrero, “Nondiffractive propagation of
light in photonic crystals,” Phys. Rev. E 73, 016601 (2006).

15. J. Hudock, N. K. Efremidis, and D. N. Christodoulides,
“Anisotropic diffraction and elliptic discrete solitons in two-
dimensional waveguide arrays,” Opt. Lett. 29, 268-270
(2004).

16. A. Ciattoni and C. Palma, “Nondiffracting beams in
uniaxial media propagating orthogonally to the optical
axis,” Opt. Commun. 224, 175-183 (2003).

17. J. A. Fleck and M. D. Feit, “Beam propagation in uniaxial
anisotropic media,” J. Opt. Soc. Am. 73, 920-926 (1983).

18. A. Ciattoni, B. Crosignani, and P. D. Porto, “Vectorial
theory of propagation in uniaxially anisotropic media,” J.
Opt. Soc. Am. A 18, 1656-1661 (2001).

19. A. Ciattoni and C. Palma, “Optical propagation in uniaxial
crystals orthogonal to the optical axis: paraxial theory and
beyond,” J. Opt. Soc. Am. A 20, 2163-2170 (2003).

20. J. Sipe and H. Winful, “Nonlinear Schrodinger solitons in a
periodic structure,” Opt. Lett. 13, 132-134 (1988).



6

21.

22.

J. Opt. Soc. Am. B/Vol. 25, No. 1/January 2008

C. M. de Sterke and J. E. Sipe, “Envelope-function
approach for the electrodynamics of nonlinear periodic
structures,” Phys. Rev. A 38, 5149-5165 (1988).

C. M. de Sterke and J. E. Sipe, “Extensions and
generalizations of an envelope-function approach for the
electrodynamics of nonlinear periodic structures,” Phys.
Rev. A 39, 5163-5178 (1989).

23.

24.

J. J. Miret and C. J. Zapata-Rodriguez

R. de L. Kronig and W. G. Penney, “Quantum mechanics of
electrons in crystal lattices,” Proc. R. Soc. London, Ser. A
130, 499-513 (1931).

H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S.
Aitchison, “Diffraction management,” Phys. Rev. Lett. 85,
1863-1866 (2000).



